Identification of a novel cell-penetrating peptide targeting human glioblastoma cell lines as a cancer-homing transporter.
نویسندگان
چکیده
Cell-penetrating peptides (CPPs) as a novel biomedical delivery system have been highly anticipated, since they can translocate across biological membranes and are capable of transporting their cargo inside live cells with minimal invasiveness. However, non-selective internalization in various cell types remains a challenge in the clinical application of CPPs, especially in cancer treatment. In this study, we attempted to identify novel cancer-homing CPPs to target glioblastoma multiforme (GBM), which is often refractory and resistant to treatment. We screened for CPPs showing affinity for the human GBM cell line, U87MG, from an mRNA display random peptide library. One of the candidate peptides which amino-acid sequence was obtained from the screening showed selective cell-penetrating activity in U87MG cells. Conjugation of the p16(INK4a) functional peptide to the GBM-selective CPP induced cellular apoptosis and reduced phosphorylated retinoblastoma protein levels. This indicates that the CPP was capable of delivering a therapeutic molecule into U87MG cells inducing apoptosis. These results suggest that the novel CPP identified in this study permeates with high affinity into GBM cells, revealing it to be a promising imaging and therapeutic tool in the treatment of glioblastoma.
منابع مشابه
Identification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning
Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of ...
متن کاملIdentification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning
Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of ...
متن کاملEffects of Trichostatin A on the Histone Deacetylases (HDACs), Intrinsic Apoptotic Pathway, p21/Waf1/Cip1, and p53 in Human Neuroblastoma, Glioblastoma, Hepatocellular Carcinoma, and Colon Cancer Cell Lines
Background: The aberrant and altered patterns of gene expression play an important role in the biology of cancer and tumorigenesis. DNA methylation and histone deacetylation are the most studied epigenetic mechanisms. Histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA) and trichostatin A (TSA) are a group of anticancer compounds for the treatment of solid and hematological canc...
متن کاملRepression of Matrix Metalloproteinases and Cytokine Secretion in Glioblastoma by Targeting K+ Channel: An in Vitro Study
Introduction: Glioblastoma is an aggressive malignancy of human brain with poorly understood pathogenesis. Voltage-gated potassium (Kv) channels and Matrix metalloproteinases (MMPs) are highly expressed in malignant tumors and involved in the progression and metastasis of glioblastoma. The purpose of this study was to determine whether a voltage-dependent potassium channel blocker could modulat...
متن کاملبررسی اثر آنتیبادیهای منوکلونال ضد hCG، بر روی رده سلولهای سرطانی انسان
Background: Human cancer cell lines express human choriogonadotropin (hCG), its subunits and derivatives, regardless of their origin and type. It appears that hCG is a common phenotype in human cancer cell lines. In this research, the effects of hCG targeting monoclonal antibodies (7D9, T18H7 and T8B12) on human cancer cell lines were evaluated. Methods: Monoclonal antibody secreting hy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical and biophysical research communications
دوره 457 2 شماره
صفحات -
تاریخ انتشار 2015